Different forms of glycine- and GABAA-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons
نویسندگان
چکیده
BACKGROUND Neurons in superficial (SDH) and deep (DDH) laminae of the spinal cord dorsal horn receive sensory information from skin, muscle, joints and viscera. In both regions, glycine- (GlyR) and GABAA-receptors (GABAARs) contribute to fast synaptic inhibition. For rat, several types of GABAAR coexist in the two regions and each receptor type provides different contributions to inhibitory tone. Recent work in mouse has discovered an additional type of GlyR, (containing alpha 3 subunits) in the SDH. The contribution of differing forms of the GlyR to sensory processing in SDH and DDH is not understood. METHODS AND RESULTS Here we compare fast inhibitory synaptic transmission in mouse (P17-37) SDH and DDH using patch-clamp electrophysiology in transverse spinal cord slices (L3-L5 segments, 23 degrees C). GlyR-mediated mIPSCs were detected in 74% (25/34) and 94% (25/27) of SDH and DDH neurons, respectively. In contrast, GABAAR-mediated mIPSCs were detected in virtually all neurons in both regions (93%, 14/15 and 100%, 18/18). Several Gly- and GABAAR properties also differed in SDH vs. DDH. GlyR-mediated mIPSC amplitude was smaller (37.1 +/- 3.9 vs. 64.7 +/- 5.0 pA; n = 25 each), decay time was slower (8.5 +/- 0.8 vs. 5.5 +/- 0.3 ms), and frequency was lower (0.15 +/- 0.03 vs. 0.72 +/- 0.13 Hz) in SDH vs. DDH neurons. In contrast, GABAAR-mediated mIPSCs had similar amplitudes (25.6 +/- 2.4, n = 14 vs. 25. +/- 2.0 pA, n = 18) and frequencies (0.21 +/- 0.08 vs. 0.18 +/- 0.04 Hz) in both regions; however, decay times were slower (23.0 +/- 3.2 vs. 18.9 +/- 1.8 ms) in SDH neurons. Mean single channel conductance underlying mIPSCs was identical for GlyRs (54.3 +/- 1.6 pS, n = 11 vs. 55.7 +/- 1.8, n = 8) and GABAARs (22.7 +/- 1.7 pS, n = 10 vs. 22.4 +/- 2.0 pS, n = 11) in both regions. We also tested whether the synthetic endocanabinoid, methandamide (methAEA), had direct effects on Gly- and GABAARs in each spinal cord region. MethAEA (5 muM) reduced GlyR-mediated mIPSC frequency in SDH and DDH, but did not affect other properties. Similar results were observed for GABAAR mediated mIPSCs, however, rise time was slowed by methAEA in SDH neurons. CONCLUSION Together these data show that Gly- and GABAARs with clearly differing physiological properties and cannabinoid-sensitivity contribute to fast synaptic inhibition in mouse SDH and DDH.
منابع مشابه
Chemical synaptic transmission onto superficial stellate cells of the mouse dorsal cochlear nucleus.
The dorsal cochlear nucleus (DCN) is a cerebellum-like auditory brain stem region whose functions include sound localization and multisensory integration. Although previous in vivo studies have shown that glycinergic and GABAergic inhibition regulate the activity of several DCN cell types in response to sensory stimuli, data regarding the synaptic inputs onto DCN inhibitory interneurons remain ...
متن کاملFacilitatory actions of serotonin type 3 receptors on GABAergic inhibitory synaptic transmission in the spinal superficial dorsal horn.
Analgesic effects of serotonin (5-hydroxytryptamine [5-HT]) type 3 (5-HT3) receptors may involve the release of gamma-aminobutyric acid (GABA) in the spinal dorsal horn. However, the precise synaptic mechanisms for 5-HT3 receptor-mediated spinal analgesia are not clear. In this study, we investigated whether GABAergic neurons in the superficial dorsal horn (SDH) express functional 5-HT3 recepto...
متن کاملGabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of P/Q-type Ca2+ channels.
Gabapentin is a lipophilic analog of gamma-amino butyric acid (GABA) with therapeutic activity against certain forms of epilepsy and neuropathic pain. Despite its structural similarity to GABA, it does not bind GABAA or GABAB receptors and the mechanism, especially of its analgesic action, has remained elusive. Here, we have studied its effects on synaptic transmission mediated by the major spi...
متن کاملGABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats
The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...
متن کاملGABAergic system for Ptychodiscus brevis toxin-induced depression of synaptic transmission elicited in isolated spinal cord from neonatal rats
The involvement of inhibitory transmitters for Ptychodiscus brevis toxin (PbTx)-induced depression of spinal synaptic transmission in neonatal rats was investigated. Stimulation of a dorsal root evoked monosynaptic reflex (MSR) and polysynaptic reflex (PSR) potentials in the segmental ventral root. The PbTx depressed the reflexes in a concentration-dependent manner and this depression was block...
متن کامل